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This paper presents the results of experiments on the resonant interaction of 
gravity waves. Two mutually-orthogonal primary wave trains are generated 
in a tank and their interaction products studied at various positions on the 
surface. Under suitable conditions, the growing resonant third-order interaction 
product is identified; its amplitude is shown to be a linear function of the 
interaction distance. The band-width of the response decreases with increasing 
distance, as is characteristic of the phenomenon of resonance. The ratio of the 
frequencies of the primary waves at  resonance is very close to that predicted 
theoretically; the growth rate of the third component is close to, though about 
20% higher than, the predicted value. Conditions far from resonance are also 
studied; it is found that the growing tertiary wave is absent in this case. 

These results offer the first unambiguous experimental demonstration of 
resonant wave interactions. 

1. Introduction 
There has been a growing interest in recent years in the nature of the inter- 

action process among the components of dispersive wave systems. One charac- 
teristic of such motions is that in each case, the wave-number k of any Fourier 
component is associated with a definite radian frequency u(k), a property 
not shared by, say, the components of a field of turbulence.$ If the wave ampli- 
tudes are small, the interactions are selective and weak: selective in that only 
certain combinations of wave components are capable of a significant energy 
interchange and weak because even for these, the interaction time is large com- 
pared with a typical wave period. If the wave-numbers k,, k, and k3 are to 
participate in a continuous energy interchange, then it is necessary that the 
conditions 

k, 5 k, k, = 0, 

cr1+cr,fu3= 0 ,  

t Present address: The Department of the Geophysical Sciences, The University of 

$ Present Address : Department of Aerodynamics, The College of Aeronautics, Cran- 

3 If  the waves are anisotropic, then u = u(k). For example, in inertial waves, u = 2Q .l, 

Chicago, Chicago, Illinois. 

field, England. 

where Q is the angular velocity and 1 the unit vector k/k. 



438 L. F. McGoldrick, 0. M. Phillips, N. E. Huang and T. H. Hodgson 

be satisfied simultaneously, where cri = cri(ki), i = 1,2 ,3  is the frequency associ- 
ated with each wave-number. When these conditions are satisfied, the non- 
linear coupling between any two of the components generates a disturbance 
with the wave-number and frequency of a free wave mode (the third component) 
and energy is fed into this mode in a resonant manner. 

The existence of this mechanism of resonant interaction was demonstrated 
theoretically by Phillips (1960) in a consideration of gravity waves in deep water. 
For these, however, in which crt = (gki) i ,  it  can be shown simply that there are 
no non-degenerate solutions to the binary interaction conditions (1 .l), and 
it was necessary to examine the third-order interactions among four components. 
In this case, the resonance conditions are 

and when gi = (gk,)*, it  is found that there do exist non-trivial interactions among 
combinations of the type 

Phillips, considering in particular the case k, = k,, estimated the order of magni- 
tude of the coupling coefficient and the initial rate of growth of the fourth com- 
ponent when its amplitude is initially zero. Subsequently, Longuet-Higgins 
(1962) devised an improved analysis which yielded a simple exact expression 
for the coupling coefficient, and Longuet-Higgins & Phillips (1962) showed that 
the same kind of interaction results in a second-order change in the phase velocity 
of any wave component in the presence of any other (any pair of wave-numbers 
k, = k,, k, = k, evidently satisfying (1.3)). Later in that year, Benney (1962) 
obtained a closed set of equations to specify the development in time of all four 
slowly varying amplitudes al(t), . . . , a,@) of the wave components, and Brether- 
ton (1964) found solutions to these in terms of elliptic functions. 

Meanwhile, Hasselman (1962, 1963a, b) was involved with the statistical 
mechanics of the interactions among the components of a random, wind- 
generated ocean wave field and with the consequent modification in the shape 
of the wave spectrum. In other directions, Ball (1964) and S.Thorpe (1966) 
considered the resonant interactions between surface and internal gravity 
waves modes, McGoldrick (1965) the second-order energy interchanges among 
gravity-capillary waves and B. A. Hughes (also yet unpublished) the same 
phenomenon in the context of inertial waves in a uniformly rotating fluid. It 
might also be mentioned that Pierson (1961) has expressed the opinion that 
the whole concept of resonant wave interactions is fallacious and, as a result, 
something of a controversy has ensued. In  any event, against the development 
of this growing body of theory there has been, to our knowledge, no direct 
experimental evidence for the existence of this type of resonant interaction nor 
any clear observational assessment of the predictions of the theory. It was to 
remedy this deficit that the present measurements were undertaken. 
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The experiment is very similar to the one suggested by Longuet-Higgins (1962). 
Two wave trains (the primary waves) are generated by plungers on adjacent 
sides of a square wave tank; at one particular frequency ratio the resonance 
conditions are satisfied and a tertiary wave, whose initial amplitude is zero, 
grows with distance across the tank. The detection and measurement of this 
third wave posed a number of problems and more than two years elapsed before 
they were resolved to our satisfaction. As a result of the rather small size of our 
wave tank, the time available for the interaction was limited to about ten wave 
periods, much less than the characteristic interaction time. The tertiary wave, 
whose initial amplitude was zero, is then everywhere small compared with the 
primary waves; to resolve it required very sharp filters and, on account of the 
relatively low frequencies involved, very long averaging times. The wave probes 
and the associated equipment were required to have a response very closely linear, 
to avoid the appearance of spurious harmonics. Finally, of course, the measure- 
ments had to be repeatable. Longuet-Higgins & Smith did in fact attempt an 
experiment of this kind, but their results were, until now, not published.? 
Nevertheless, it is a pleasure to acknowledge our indebtedness to them for an 
early description of their own work in this direction. 

Before we enter into a detailed description of the experiment, some aspects 
of the theory of this particular interaction should be outlined a little more 
explicitly. 

2. The theory of the interaction 

city potential is represented by 
Consider, first, a set of four interacting gravity wave trains in which the velo- 

where x = k,. x - g,. t are such that the resonance conditions (1.3) are satisfied, 
and 4 represents the bounded second- and third-order contributions to the 
velocity potential resulting from the interaction. The complex first-order mag- 
nitudes br are slowly varying functions of time in the sense that 

To the first order, the kinematic free-surface condition is [ = a$/az, where (x, 9, t )  
is the free-surface displacement. In  virtue of this, the amplitude of each wave 
component is 

a, = ilc,br/r, (r  = 1, ..., 4)) 

to the first order. The first-order terms of (2.1) satisfy Laplace’s equation as 
they stand; when the dynamical and kinematical free-surface conditions are 

t Because of the close connexion between this study and ours, they are here being 
published together. 
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expanded to the third order and the substitution (2.1) is made, there results the 
following set of equations specifying the ratio of change of the quantities b,: 

4 

s=1 
4 

s=1 

4 

a = l  

4 

s= 1 

a16, = ib, C. glsbsbz +ihb,b,b:, 

c2 b2 = ib, C g2sbs b: + ihb, bg b4, 

a36, = ib, C g,,b,b: +ihb,b;b,, 

CT,~), = ib, 2 g,,b,b:+ihbTb,b,. 

The derivation is given, in essence, by Benney (1962) though he slightly mis- 
stated the resonance condition and, as a result, his equations are slightly different 
in detail. The real coefficients grS (r ,s  = 1, ..., 4) and h are constants of the 
interaction and are functions of the configuration of vectors k, . . . k,. 

The terms involving g ,  are associated with changes in the phase velocity that 
result from self and mutual interactions. The diagonal terms whose coefficients 
are simply 

g,, = (r = 1, , . . , 4 )  (no summation) 

describe the interaction of a wave with itself to the third order, which produces the 
increase in phase velocity of &(lc,a,)z (g/kr)* (no summation) found by Stokes. 
The off-diagonal terms in the matrix g specify changes in the phase velocity 
resulting from the mutual interaction between pairs of waves, an effect noted 
by Longuet-Higgins & Phillips (1962). These authors give expressions for the 
coefficients g,,, which are rather complicated functions of the vectors k, and k, 
of the order k:ki. It is the remaining term in each equation that describes the 
energy interchange among the components, the identification and measurement 
of which is the object of the experiment. 

Of all the possible resonant configurations of the vectors k, . . . , k,, one is par- 
ticularly convenient for experimental study. This is illustrated in figure 1. 
Two of the primary wave trains coincide (say k, = k,) and are perpendicular to 
another (k,) so that there are only three distinct wave-numbers in the inter- 
acting quarter. The interaction equations for this case are found by taking the 
limit k, + k,, the relative phase of b, and b, in the interaction region being such 
that the local momentum and energy densities are continuous as the limit is 
approached. This requires that b, = ib, and the velocity potential in the now 
combined single wave is specified through (2.1) by 8, = ( 1  + i) b,. When k, = k,, 
the coefficients gls = g ,  and grl = gr3 and the interaction equation (2.4) become 

(2.5) i 
a1gl = i8,(gl1& 6: + g12 b2 bz + g14 b4 bz)  + ih8T b, b,, 
~ ~ 6 ,  = ib2(gzlSl8: +g,,b,b: +g,,b,b:) + &ih@b,*, 

c4A4 = ib4(g416l& +g4,b,b; +g4,b4b:) +&ih62,b:, 

the first and last of the set (2.4) being now identical. The coupling coefficient 
h in this case of two coincident wave-numbers is given by Longuet-Higgins’ 
(1962) analysis as 

f A  = Gk,( l+t )F(5) ,  (2.6) 
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and 

When, as in these experiments, k, and k, are mutually perpendicular, resonance 
is found at  the frequency ratio al/az = 1.7356, whence = -0.424 and 
F ( ( )  N 0.312. 

For 90° intersection, 
KI/K,= 30133 
u 1/0.2= 1.7356 

FIGURE 1. Solutions to the resonance conditions. 

In  the tank, the third component, whose amplitude is initially zero, builds 
up solely as a result of the energy transfer. Two energy partition integrals can 
be found simply from (2.5): 

o1b,b~+2a,b,b~ = const., 

v1 b, b: + 2a4 b, bg = const. 

Consequently, the initial growth of the component with wave-number k, 
is accompanied by an increase in the energy density of the k,-component, both 
at the expense of the k,-component. Throughout the tank, however, Ib,] is small 
compared with either lbll or lbzl which are both sensibly constant, and for the 
present purpose, it is sufficient to approximate the third member of (2.5) by 

u4b4 = &ihb:bg, (2.10) 

where the circumflex is dropped from 8,. Consequently, 

The wave amplitudes a, = ik,.b,/a, (no summation), so that 

h u2v 
la41 = 2g$$la?l la21 t 

= *k:gz(l +o F(E) \a:\ la,\ t, (2.11) 
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since gt = gk, and from (2.6). In  our experiments the interaction time t is repre- 
sented by the distance d = tcg over which the interaction has taken place, where 
cg is the group velocity of the growing tertiary wave. Equation (2.11) can be 
written alternatively as 

(2.12) a& = (a,k,)2 (a&,) G k ,  4, 
where G = (g3/v2) (1 + ( ) F ( ( ) ,  r = gl/u, = ((+ 1)-l and 8 is the angle of inter- 
section of the primary waves. At resonance, of course, r ( and so 6) is a function 
of 0. 

Two further points should be noted. First, the ratio gl/gz = 1-7356 ... is the 
ratio of the frequencies of the first-order primary wave components for the 
resonant interaction. These components, however, are simultaneously under- 
going self-interactions, the wave frequencies measured are a little higher than 
the frequencies of the primary waves. The measured frequency ratio at  which 
resonance is observed is consequently a little different from the value 1.7356.. . , 
as inspection of our results will show. The reconciliation is described by Longuet- 
Higgins & Smith in the accompanying paper, and there is no need to discuss it 
further here. Secondly, the response of the system to nearly resonant conditions 
is, as in all resonant systems, a function which becomes more sharply tuned as 
the interaction distance increases. Again, the elements of the theory are given 
in the paper by Longuet-Higgins & Smith; it will be noted that the observations 
to be described are consistent with this behaviour. 

3. The experimental apparatus 
It is essential in any experimental undertaking of this nature that conditions 

be precisely controlled. Accordingly, the wave tank and the associated generating 
and measuring devices were built specifically for this experiment. The wave tank 
itself was built of steel and glass, accurately levelled and squared. The interior 
dimensions are l l f t .  square by 4ft. deep. It is supported on sixteen concrete 
columns above a firm concrete floor over solid earth. The structure is rather 
massive and stiff, to alleviate vibration and flexure problems. 

Wave-makers and absorbing beaches are located along the four sides as 
shown in figure 2. The beaches are of plywood sheets, sloping at  an angle of 
about 15", covered with a 3in. layer of rubberized horsehair to eliminate back- 
wash effects. The amplitude reflexion is less than 10 % at all usable frequencies. 
This figure could have been improved by lengthening the beaches and making 
the slope more gradual, but this would have intruded greatly upon the already 
small working area. 

The primary wave generators are of the plunger type. The smaller (gl) plunger 
is rectangular in cross-section; the larger trapezoidal with the front face sloping 
at 20" to the vertical. They are of ribbed plywood construction for lightness, 
covered with fibreglass for smoothness and water-proofing. The intersection 
of the two plungers is a sliding contact to prevent unwanted disturbances from 
propagating out into the working area as a result of end effects. Both plungers 
are driven vertically in a nearly sinusoidal motion by independent five h.p. 
synchronous motors through a variable spacing pulley and V-belt system and 
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reduction worm gears. Frequencies of both plungers are individually and con- 
tinuously adjustable over a range of 8 to 4 strokes per second. The amplitudes of 
the strokes are individually and continuously adjustable from zero to 6in., 
peak to peak. Stability of the generating frequency is within 0.1 yo over a period 
of several hours; reproducibility of a given setting is within the same limits. 
Visual estimates indicate the wave crests produced by each plunger are uniform 
and straight, closely representing ideal two-dimensional (long crested) waves. 

FIGURE 2. Diagram of the wave tank. The arrows identify the directions 
of the wave-numbers of interest. 

Frequency measurements are made with a simple photocell circuit and an 
electronic counter. The frequencies of the waves, of course, are exactly those of 
the plungers. The entire plunger mechanism is supported by a rigid structural 
steel frame such that no part touches the wave tank. This is absolutely necessary 
in order to prevent mechanical vibrations from being transferred to the water 
where they would appear as unwanted noise in the measured wave signal. 

Measurements of the free-surface elevation were made by a capacitance probe 
of a new type. Since prior calculation shows that the maximum amplitude of the 
resonant tertiary wave will be about 1 mm in the presence of 1Omm primary 
waves, extreme sensitivity, linearity and low noise are necessary in the detection 
system. Nothing suitable for this type of measurement is commercially available. 
The probe finally adopted is very simple, and can be made in about 15min. 
It is produced by drawing a Pyrex tube to a diameter of less than 1 mm, filling 
the tube with clean mercury, and sealing one end in a flame. The other end is 
broken off at  a length of about 6 in., a piece of wire (preferably iron) is inserted 
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partially into the mercury and sealed in with a room-temperature vulcanizing 
silicone rubber sealing compound. The assembly is glued into a modified BNC 
connector (UG 88 CjU), the iron wire being soldered to the centre conductor pin. 
The resulting cylindrical capacitor has a capacitance of approximately 30 pF/cm 
in tap water. 

This type of capacitance probe has many advantages over similar types used 
before (e.g. enamelled wire or teflon-coated wire). The high dielectric constant 
of glass increases the unit capacitance and so the sensitivity. The glass absorbs 
almostno moisture, so its normally very high leakage-resistance remains constant. 
This is crucial; variable characteristics require constant recalibration. The thick- 
ness of the glass wall is remarkably uniform, and there are no bumps or dis- 
continuities such as those appearing in coated wire. An added and unexpected 
advantage is that if the probe and the water surface are kept sufficiently clean, 
there is no problem of meniscus reversal. When made in these short lengths for 
small scale laboratory studies, the probe is sufficiently rigid that it need be sup- 
ported from only one end. 

The probe is used as the capacitance element in a grounded capacitance block- 
ing oscillator. Changes in capacitance (ideally directly proportional to the 
instantaneous surface elevation) modulate the repetition frequency of the out- 
put pulses. This modulated pulse train is detected by standard methods,? 
the output of the detector varying linearly with surface elevation. Calibration 
is accomplished dynamically by oscillating the probe in and out of still water 
with known amplitudes. The overall sensitivity of the system is about 0.7V/ 
mm wave amplitude at  all frequencies of interest in the experiment. Linearity, 
as determined by static calibration with a micrometer traverse and digital 
voltmeter, is within 0.01 mm deviation from the best straight-line fit as a result 
of the uniformity of the probe and the linearity of the associated electronics. 
During the course of the measurements, the system was recalibrated at  regular 
intervals. The sensitivity never changed by more than 2 yo, and this is attributed 
to the ageing of the timing resistor in the blocking oscillator. Replacement 
restored the original figure. One probe was used almost daily for over a year, a 
tribute to the ruggedness of the device. 

Actual measurement of wave heights is accomplished by passing the output 
signal from the wave detector through a sharply tuned band pass filter of the 
Wien bridge type (Dytronics, Model 720). The sharpness of the filter character- 
istic is adjusted to give 40 dB rejection of the frequency twice that and half that 
to which the filter is tuned. The centre frequency of the filter is set by comparison 
with an external low-frequency sine-wave oscillator adjusted precisely to the 
desired frequency with the aid of an electronic counter, and tuning the filter 
for 180' phase shift. The time average of the filtered signal is determined by 
squaring with a Philbrick Multiplier (Model MU/DV) and integrating over a 
large number of periods with an electronic integrator. 

With this apparatus, an experiment can be performed much along the lines 
as described by Longuet-Higgins (1962). In  the next section, the details of the 
procedure and the results will be presented. 

See, for instance, Huber (1958). 
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4. The initial linear growth 
According to the simple theory, and as given by Longuet-Higgins & Smith 

(1966, equation (A17)) and (2.12) above, the growth of the resonant tertiary 

where a, and a2 are the amplitudes of the primary waves, assumed constant in 
the initial stages of growth. Sk is half the difference between k, = (4k2,+k?$ 
and the wave-number computed from (2~7 , - - a~)~ /g .  6k can also be written 
approximately as Sk = - 0.2496rk4, for small departures of r from ro, for purposes 
of calculation. d is the distance over which the interaction takes place, and is 
measured in the direction of propagation of the k, wave. G(r,8) is the inter- 
action constant which depends on the frequency ratio r = al/a2 and the angle 
of intersection 8 of the primary waves. For 90" intersection, ro = 1.7356, and 
G(ro, &r) = 0-442, as shown by Longuet-Higgins & Smith (1966). They further 
show that for variations of r over a range of 1.4 to 2.1, G(r, in) varies little from 
this value, so will be treated as a constant here, independent of r .  Note that when 
61c = 0 (r = ro), the growth of the resonant wave is linear with d. 

The experiment is divided into three separate series. For series I, the amplitude 
a2 is constant, 8.95mm, and the frequency f z  ( = az/2n) is kept constant a t  1.536 
cycles/sec. The frequency ratio r is varied over a range of 1.5-2-2 by varying the 
speed of plunger number 1. Over this range of frequencies the maximum slope 
a,k, remained approximately 0.1 For series 11, the amplitude and frequency a2 
andf, are the same as in series I, but the stroke of plunger 1 is decreased just 
enough to decrease the maximum slope by a factor of 4 2  less than in series I. 
Measurements are still taken over the same range of frequency ratios, however. 
In  series 111, all the frequencies are increased by slightly greater than 10%. 
f 2  is kept constant at  1.690 cycles/sec, and a2 is reduced to 8.40 mm, and again 
the same frequency ratio is examined. The reason for this increase will be made 
clear later. For series I and 11, detailed measurements are made at five points in 
the tank, for which d = 81-4,107,137,168 and 198 em. Beyond this, the beaches 
have an interfering effect. 

The results of the measurements of series I are shown in figures 3-7 which show 
a dimensionless value of a, as a function of frequency ratio r. According to (4.1), 
with G assumed constant, the experimental points should closely approximate 
the shape of the curve Isin6kd/6kdI, especially in the vicinity of ro. Using the 
approximation of Longuet-Higgins & Smith, Sk = - 0.2496rk4, with k, chosen to 
be the value necessary to satisfy the resonance conditions (k, = (4k$+k;)*) ,  
then for series I and series I1 the response function can be written approximately 
as 

It is evident that as d increases, the centre lobe of the response function should 
become sharper, a characteristic width being inversely proportional to d, but the 
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function should always have the same maximum value. The dashed curve in each 
of the figures 3-7 represents the calculated response function. 

Figure 3 shows the results of the measurements at  d = 81.4 em. In determining 
the ordinates, the values of a, and az were measured for every point, as well as 
the amplitude a,. Wave-numbers are calculated from the infinitesimal relation 
lc = a2/g, and no attempt is made yet to correct for finite-amplitude effects. 
Each of the amplitude measurements has, however, been corrected for the in- 
evitable electronic noise. Furthermore, when tuning the Wien bridge filter on 
any spectral line, the presence of neighbouring lines produces some contribution 
because of the shape of the filter characteristic. All amplitude measurements 

0.80 

3 

-2 v 

2 -  
S %  0.20- 

0.40 

0 

I , I ,  , , , , 4 
1.5 1.6 1 -7 1.8 3.9 2.0 2.1 

filfi 
FIGURE 3. The resonant response at  d = 81.4 em, series I. 

have been corrected for this effect of the filter shape. Each of the points on this 
figure (and the succeeding four) is the average of at least 100 separate twenty- 
five second integrations. The large number of points is the result of several 
separate sweeps through the indicated frequency ratio range, separated in time 
by as much as one month to  determine whether or not the results could be 
repeated. 

Experimental values for the constant G(r, in) and the resonant frequency 
ratio r ,  are determined by obtaining the best fit of the calculated response func- 
tion to the experimental points (by eye). The location of this best fit is shown by 
the dashed line. The resonant frequency ratio r,, that at  which the maximum 
occurs, for figure 3 is 1-73, and the peak (which should correspond to the theoreti- 
cal value of G, namely 0.442) is G ,  = 0.55. 
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Figure 4 shows the results of measurements at d = 107cm. The response 
function has become sharper, as has the grouping of the experimental points. For 
this station, G ,  = 0.57 and rm = 1.74. 

Figure 5 shows the results at d = 137 cm. The response function, calculated 
and experimental, is sharper still. Here, G, = 0.55 and r ,  = 1-745. For 
d = 168cm, figure 6 shows further sharpening, and G, = 0.55, r, = 1.75. For 
d = 198 cm, the response is sharper again. For this last station, G, = 0.57 and 

FIGURE 4. The resonant response at d = 107 om, series I. 

r,% = 1.78. Table 1 summarizes the results of series I in detail. Here, a4 and 
a,k, are determined from the measured values of G,. k, and k, correspond to 
the values of the wave-numbers at the experimentally-determined resonant 
frequency ratio. 

According to (4.1) the growth rate of the resonant wave is proportional to the 
square of the maximum slope of the primary wave. If, everything else being 
held constant, the amplitude a1 is decreased by a factor of J.2, the resulting growth 
rate of the resonant a4 wave should be halved. Series I1 was an investigation of 
this prediction. Measurements were made at the same five stations over approxi- 
mately the same range of frequency ratios, and repeatability determined in the 
same manner as in series I. The results, when plotted as in figures 3-7, are virtu- 
ally indistinguishable from the results of series I in all details, and need not be 
shown here. The locations and heights of the peaks of the response functions are 
identical, and the experimental scatter is within the same limits. This indicates 
that the growth rate is indeed halved. Figure 8 shows the growth of the resonant 
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FIGURE 5 .  The resonant response at d = 137 cm, series I. 

FIGURE 6. The resonant response at d = 168 cm, series I. 
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wave with distance for both series I and series 11. The actual best fit to the growth 
rate in series I1 is 0.516 times that in series I, well within any experimental 
error of the expected value 0.5. 

To guard against the possibility that the results of series I and I1 are influenced 
by reflexions or strange harmonic structure in the finite-size tank, the measure- 
ments of series I11 have been performed at  frequencies and wave-numbers not 
commensurate with the previous series. Approximately the same range of 
frequency ratios is examined, however, and a comparison of the results measured 
at d = 198cm is shown in figure 9. The ordinate and abscissa have been made 
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Y 
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FIGURE 7. The resonant response at d = 198 cm, series I. 

dimensionless with the peak value of the response (Gm) and the locations of the 
peak (rm), determined as described above. The surprisingly good agreement and 
consistency indicates that stray interfering effects are not present in any notice- 
able degree. Measurements a t  the other four stations, while not nearly as com- 
plete as these, confirm the above result, but not quite as dramatically, data 
being somewhat sparser. The growth is still linear, however, and the measure- 
ments exhibit a similar characteristic shape. 

So far, attention has been confined to measurements of the resonant wave at  
frequency 2cr1 - cr2 and the primary waves at frequencies crl and cr2. Other har- 
monics are however present in the tank. By the nature of the basic non-linearity 
of gravity waves, presence of bounded second-order harmonics (Zcrl ,  2cr2, a, -t. a2) 
and third-order harmonics (3a,, 3a2, 2cr1 + cr2, crl 2~7,) is assured, as well as 
harmonics of higher order which are of no interest here. A separate set of measure- 
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ments has been undertaken to determine the harmonic structure for several sets 
of primary frequencies corresponding to the three series described above. 

Figure 10 is a comparison of the amplitude spectra between series I (upper 
figure) and series I1 (lower figure), both measured at  d = 137 cm. In  both cases, 
the frequency of wave-maker 1 is set so that the frequency ratio corresponds to 
the theoretically predicted critical frequency ratio r,, = 1.7356. This is quite close 
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FIGURE 10. Amplitude spectra measured at  d = 137 cm for series I (upper) 
and series I1 (lower), both on resonance. 

to the measured resonant frequency ratio (see table l),  for both series, and the 
measurements are taken to be representative of the spectral content at  resonance. 
All the harmonics that are measurable in the frequency range from 1.0 to 8 cycles/ 
see are identified in the margin between the two figures. The circles represent 
actual data points as measured with the use of the Wien bridge filter. The heavy 
vertical lines represent the actual spectral content, assuming, of course, that 
the spectra are composed of discrete harmonics superimposed on background 
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(electronic) noise. If the filter characteristic (transfer function) is applied to 
the complete discrete spectra shown, the resulting responses very nearly dupli- 
cated the measured points, agreement being particularly good in the vicinity 
of spectral peaks.? Of particular importancein comparing these two spectraare the 
relative sizes of a,  (atfi) and a4 (at 2f1-f2). According to (4.1) and as previously 

f (cycles/sec) 

FIGURE 11. Amplitude spectra measured a t  d = 137 ern for series I11 on 
resonance (upper) and off resonance (lower). 

demonstrated in figure 8, a decrease of a, by a factor of 4 2  should produce a 
correspmding decrease of a4 by a factor of 2,  a2 being held constant. This indeed 
is observed. Of no less importance is the fact that the component a4, generated 
by resonant third-order interaction, is larger in both cases than any of the second- 
order components, all of which are clearly identified. This fact becomes more 
evident at larger values of d ,  since a4 is increasing. It is notable that none of the 

t In  fact, the distribution of points about the highest spectral peak (at fi) represents 
very closely the filter shape. 
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second-order components, nor the primaries, engaged in any measurable growth 
(or decay) across the tank. This is based on more detailed information collected 
during the course of series I. The other third-order components are too small to 
be measured consistently. 

Figure 11 is a comparison of two spectra for series 111. The upper spectrum 
is on resonance, and the lower, off resonance. The detuning is accomplished by 
decreasing fi, while keeping the amplitudes of the primaries the same. The im- 
portant point here is the observation that the resonant component (2f1 -fi) 
is greatly diminished in the off-resonance case. 

5. Some comments 
It should be emphasized that the results of the preceding section represent 

what is actually present in the wave tank for any particular frequency settings. 
The only corrections that have been applied are those concerning the more 
obvious electronic influences, and have been discussed above. It is the purpose 
of this brief section to comment on the relation between the observations and 
the theory. 

The most apparent difference is in the growth rate, as can be seen by comparing 
the measured values of the interaction constant Qm(rm, Qn) with the theoretical 
value first calculated by Longuet-Higgins (1962). The theoretical and measured 
growth rates differ by about 20%. This is about the upper limit of possible 
systematic errors in measurement of absolute amplitudes, and no strenuous 
attempt will be made here to reconcile the two figures. Most important in this 
regard, however, is the surprisingly good consistency among the observations 
from point to point within the tank. That the distribution of relative levels, as 
presented in figures 3-7 and figure 9, is in such good agreement with the theo- 
retically determined response functions can be taken as evidence that the reson- 
ance mechanism is of fundamental importance in the dynamics of energy transfer. 
This and the linear growth demonstrated in figure 8 definitely rule out the possi- 
bility of a steady state under resonant conditions. 

The other significant difference is in the observed values of the critical fre- 
quency ratio r,. From table 1 it is evident that frequency ratio for maximum 
resonant response is increasing with the distance of propagation, but is re- 
markably close to the theoretical ro. Longuet-Higgins & Smith (1966) also noticed 
this effect, but their departures from yo are much larger than ours. They right- 
fully attribute this discrepancy to other finite amplitude (but non-resonant) 
effects, such as self interaction (the Stokes correction), mutual interaction, and 
the influence of surface tension and finite depth. The first two effects arise 
directly from the terms under the summation signs in the right-hand side of 
(2.4), as explained previously, which arise at third order. The other twrt.effects 
influence the wave-number-frequency relationship directly, and are present at 
all orders of approximation. Longuet-Higgins & Smith present a detailed analysis 
of the corrections to be applied to reconcile this difficulty, with some success. 
The same system of corrections can be applied to the present results, with the 
exception of that for finite depth, which turns out to be insignificant for our case. 
The tendency of corrections of these types applied to series I, I1 and I11 is to 
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make the discrepancy smaller, but the maximum influence is not greater than 
about 2 %, which hardly justifies the effort involved, and is certainly smaller 
than the graphical errors involved in determining r, in the first place. The 
reason that our critical frequency ratios are so close to the predicted value is 
that the slopes of the primary waves have been made as small as can be tolerated 
within the present resolution of the detection system. 

In light of the success of these experiments, it  seems prudent to clear up a 
possible confusion generated by the designation of the growing wave as a 
‘resonant tertiary wave’. The distinction between the terms ‘third order’ 
and ‘tertiary’, as used in the present context, should be made. If strict concepts 
of order are followed, then this wave is no longer of third order by the time 
it has progressed half way across the tank. Indeed, in the limited facility here, 
this observed growth shows no signs of stopping, so an upper limit to its size 
cannot as yet be determined experimentally, even though energy considerations 
place an absolute upper limit on its amplitude. The mechanism here is the same 
as that discussed by McGoldrick (1965) in which it is shown by numerical ex- 
ample that two capillary-gravity waves can create a resonant wave whose maxi- 
mum slope becomes greater than either of the initial slopes in a very short time, 
whereupon the process reverses itself in a periodic manner in such a way as 
to keep the total energy per unit projected surface-area constant. Similarly 
in the present case, the interaction is to be interpreted as being among three waves 
of arbitrary (but inter-related) amplitudes. The extended analysis of Q 2 above is 
based on precisely this interpretation, the aim of the analysis being the prediction 
of the finite amplitudes of the three (or four, as the case may be) interacting 
modes as a function of time under a constant energy constraint. So the adjective 
‘third order’ should not be used tQ describe the interacting waves themselves. 
It is justifiable, however, to describe the entire mechanism as a tertiary resonant 
interaction, for the simple reason that the dynamical terms in the governing 
equations that are responsible for this time-dependent energy transfer are of 
third order in the mathematical hierarchy. 
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